• Understanding the Hipot test
• Hipot test requirements
• Understanding Hipot test failures
• Arc detection – What does it mean?
Meet Our Team

Syed Abidi
Panelist
Applications Engineer

Vanessa Zepeda
Panelist
Inside Sales Coordinator

Brittany Socha
Organizer
Marketing Coordinator
Webinar Notes

Please use the Q & A utility to ask us any questions concerning the material being presented.

You can find a recording of this webinar and presentation on our Webinar Archive page, www.arisafety.com/webinars/archived-webinars/

Please contact Brittany Socha – on the chat line or email Brittany.socha@ikonixusa.com if you have any connection issues.
Hipot Testing 101: Learning Objectives

- Understanding the Hipot Test
- Hipot Test Requirements
- Hipot Test Considerations and Failures
- Arc Detection
The Hipot Test

The Dielectric Voltage-Withstand Test is commonly known as the Hipot test.

Hipot test is the most common type of electrical safety test.

Designed to verify that the insulation of a product is adequate enough to withstand high voltage.

Performed by stressing the insulation of the product far beyond what it would encounter during normal use.

Hence, the term “voltage withstand test”.

The hipot test is performed at high voltage to test the insulation of a product.
The Hipot Test

The diagram shows a basic circuit used for hipot test.

The resulting leakage current is measured to determine whether a product’s insulation is able to withstand the high voltage without breaking down.

This test verifies that the insulation of a product is capable of protecting the user from any leakage currents as a result of an electrical fault within the product.

Leakage current is gives a measure of the product’s insulation quality.
The Hipot Test

Hipot test PASS condition.

The insulation is able to withstand the high voltage and does not break down or does not allow excess leakage current to flow on the surface of the product under test.

Quality insulation will not allow excess leakage current to flow on a product’s surface.
The Hipot Test

Hipot test FAIL condition.

Insulation breakdown results in excessive leakage to the chassis of the DUT.

Poor insulation will breakdown and dangerous leakage current can flow on the surface of a product.
The Hipot Test – A Versatile Test

When performed as **Type** tests Hipot tests are helpful in finding various important defects.

Nicked or crushed *insulation*, stray wire strands or braided shielding.

Conductive or corrosive contaminants around the conductors.

Terminal *spacing* problems and tolerance errors in cables.

Inadequate creepage and clearance distances introduced during the manufacturing process.
The production-line hipot test is used to determine whether the construction of a production unit is about the same as the construction of the unit that was subjected to type testing.

Some of the process failures that can be detected by a production-line hipot test include, a transformer wound in such a way that creepage and clearance have been reduced.

Such a failure could result from a new operator in the winding department.

The hipot is more than just a go/no-go test. It can be used to find various insulation problems.
The Hipot Test – A Versatile Test

Scrapes • Pinholes • Spacing • Crimps • Heat
Material Build-up • Moisture

Insulation of any electrical device can become weak over time.
Video Demonstration
The best indication of a dielectric breakdown is a leakage current measurement significantly higher than the nominal current measurement.

Test voltage, the product being tested and the capacitance of the product can all impact the total leakage current measurement.

When we perform a hipot test on a product, we can think of the product as a giant capacitor.

The voltage is applied between the mains input and the chassis of the product which are separated by the insulation, which is just like a capacitor.
The Hipot Test Voltages

Unless and otherwise stated by the safety standard, a good rule of thumb to calculate the hipot test voltage is: (2 X Nominal Input Voltage) + 1000V

For example, the hipot test voltage for a product that has a nominal operating voltage of 120V will be: (2 X 120V) + 1000V = 240V + 1000V = 1240V or 1.24KV.

In some cases, safety agency requirements call out for hipot test voltage for certain devices.

For example, medical equipment with applied parts that have direct contact with a patient is tested at 4000V or 4KV.

Most double insulated (Class II) products are subjected to design tests at voltage levels much higher than the rule of thumb described above.

Hipot test parameters are called out by the standards but when in doubt, use the rule of thumb.
Poll Question

Why are leakage current limits important during a hipot test?
Class I vs. Class II Application
By the Numbers - Standards

UL 1598/CSA C22.2
No. 250.0-08 3rd Edition

<table>
<thead>
<tr>
<th>17.1 Dielectric Voltage-Withstand Test (The Hipot Test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>REQUIREMENT:</td>
</tr>
<tr>
<td>Test voltage = 1000 V AC for incandescent luminaries</td>
</tr>
<tr>
<td>Test voltage = $1000 + 2 \times \text{Rated Voltage}$ for all other luminaries</td>
</tr>
<tr>
<td>Test time = 60 sec</td>
</tr>
<tr>
<td>PASS CRITERIA:</td>
</tr>
<tr>
<td>No breakdown on product insulation</td>
</tr>
<tr>
<td>If DUT enclosure is non-conductive, use metal foil as conductive medium for return point.</td>
</tr>
</tbody>
</table>

18 Factory Production Tests

<table>
<thead>
<tr>
<th>18.1 Dielectric Voltage-Withstand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test voltage = 1200 V AC between primary circuit and accessible dead metal chassis</td>
</tr>
<tr>
<td>Test time = 1 sec</td>
</tr>
<tr>
<td>No insulation breakdown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18.2 Grounding Continuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test current = 30 A passed between earthing contact point and accessible conductive parts</td>
</tr>
<tr>
<td>No load voltage ≤ 12 V AC or DC</td>
</tr>
<tr>
<td>Impedance of ground circuit ≤ 100 mΩ</td>
</tr>
</tbody>
</table>
8.8.3 Dielectric Strength (The Hipot Test)

REQUIREMENT:
Test voltage - Refer to tables 6 and 7
Test time = 10 sec ramp up, 60 sec dwell & 10 sec ramp down
Tested at 50Hz, 60Hz or DC equivalent (1.414 * AC test voltage)

PASS CRITERIA:
No dielectric breakdown
If DUT enclosure is non-conductive, use metal foil as conductive medium for return point.

Production Hipot test parameters may differ from Type test parameters.
16.3 Electric Strength Test
(The Hipot Test)

REQUIREMENT:
- 500 VA Equipment Required
- Test voltage - Refer to Table 7
- Test voltage for Class 0 and Class I appliances = 1250 V AC
- Test voltage for Class II appliances = 1750 V AC
- Test time = 5 sec ramp up, 60 sec dwell

PASS CRITERIA:
- No breakdown on product insulation

Annex A
(Routine Tests)

Routine Ground Bond
- Test Current = 10 A
- No load voltage ≤ 12 V AC or DC
- Impedance of earthing conductor for cord connected equipment ≤ 200 mΩ
- Impedance for all other appliances ≤ 100 mΩ

Routine Hipot
- Test voltage - Refer to Table A.1
- Leakage current limit ≤ 5 mA
- Leakage current limit for high leakage appliances ≤ 30 mA
Video Demonstration
Each failure detector has a priority on the instrument. Shorts and breakdowns will always be detected with a high speed interrupt. Leakage limits will trigger a failure if leakage current strays from user set values. Arc detection is an extra feature which is enabled.
Failure Detection

- High speed
- High speed
- Slower
- Low frequency
- Both frequencies, but one threshold
- 10 samples/sec
- CPU
- ARC
- LEAKAGE (meter)
- OVERLOAD
- RTN
- DUT
- HV
- R
- L
- R
Arc Failure Detector

High Pass Filter

Sensitivity Level Adjustment

Keys 1 - 9

D/A

>10KHz

Comparator

Interrupt 400µS

CPU
Arc Detection Settings

<table>
<thead>
<tr>
<th>Arc Setting</th>
<th>mA Trip Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>17.75</td>
</tr>
<tr>
<td>3</td>
<td>15.5</td>
</tr>
<tr>
<td>4</td>
<td>13.25</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>8.75</td>
</tr>
<tr>
<td>7</td>
<td>6.5</td>
</tr>
<tr>
<td>8</td>
<td>4.25</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

It’s important to remember that this method of arc detection is NOT an exact science. There are many variables involved including surface geometry, altitude, atmospheric pressure etc.
According to most test standards which of the following is considered to be a true failure of the insulation?
Visit us online to view all of our Educational Resources
arisafety.com/support/educational-resources/
Our Next Webinar is

Hipot Test 102

Wednesday, June 6 at 10 A.M. CT
Nobody Understands Electrical Safety Testing Better Than We Do.

SAFETY
Safe Workstations. Safe Products. Safe Customers. Conform to OSHA.

EDUCATION
Educate your operators on best practice.

PRODUCTIVITY
We’ll help you improve throughput on your production line.

Ready to Improve Your Production Line?
Visit ikonixusa.com/consulting Contact applications@ikonixusa.com

Custom packages available to meet your needs.
You can find a recording of this webinar and presentation on our Webinar Archive page, https://www.arisafety.com/webinars/archived-webinars/

Check out our website for more information arisafety.com

For any questions about our webinars send an email to Brittany at brittany.socha@ikonixusa.com